Apache Druid
  • Imply Documentation

›Hidden

Getting started

  • Introduction to Apache Druid
  • Quickstart
  • Docker
  • Single server deployment
  • Clustered deployment

Tutorials

  • Loading files natively
  • Load from Apache Kafka
  • Load from Apache Hadoop
  • Querying data
  • Roll-up
  • Configuring data retention
  • Updating existing data
  • Compacting segments
  • Deleting data
  • Writing an ingestion spec
  • Transforming input data
  • Kerberized HDFS deep storage

Design

  • Design
  • Segments
  • Processes and servers
  • Deep storage
  • Metadata storage
  • ZooKeeper

Ingestion

  • Ingestion
  • Data formats
  • Schema design tips
  • Data management
  • Stream ingestion

    • Apache Kafka
    • Amazon Kinesis
    • Tranquility

    Batch ingestion

    • Native batch
    • Hadoop-based
  • Task reference
  • Troubleshooting FAQ

Querying

  • Druid SQL
  • Native queries
  • Query execution
  • Concepts

    • Datasources
    • Joins
    • Lookups
    • Multi-value dimensions
    • Multitenancy
    • Query caching
    • Context parameters

    Native query types

    • Timeseries
    • TopN
    • GroupBy
    • Scan
    • Search
    • TimeBoundary
    • SegmentMetadata
    • DatasourceMetadata

    Native query components

    • Filters
    • Granularities
    • Dimensions
    • Aggregations
    • Post-aggregations
    • Expressions
    • Having filters (groupBy)
    • Sorting and limiting (groupBy)
    • Sorting (topN)
    • String comparators
    • Virtual columns
    • Spatial filters

Configuration

  • Configuration reference
  • Extensions
  • Logging

Operations

  • Web console
  • Getting started with Apache Druid
  • Basic cluster tuning
  • API reference
  • High availability
  • Rolling updates
  • Retaining or automatically dropping data
  • Metrics
  • Alerts
  • Working with different versions of Apache Hadoop
  • HTTP compression
  • TLS support
  • Password providers
  • dump-segment tool
  • reset-cluster tool
  • insert-segment-to-db tool
  • pull-deps tool
  • Misc

    • Legacy Management UIs
    • Deep storage migration
    • Export Metadata Tool
    • Metadata Migration
    • Segment Size Optimization
    • Content for build.sbt

Development

  • Developing on Druid
  • Creating extensions
  • JavaScript functionality
  • Build from source
  • Versioning
  • Experimental features

Misc

  • Papers

Hidden

  • Apache Druid vs Elasticsearch
  • Apache Druid vs. Key/Value Stores (HBase/Cassandra/OpenTSDB)
  • Apache Druid vs Kudu
  • Apache Druid vs Redshift
  • Apache Druid vs Spark
  • Apache Druid vs SQL-on-Hadoop
  • Authentication and Authorization
  • Broker
  • Coordinator Process
  • Historical Process
  • Indexer Process
  • Indexing Service
  • MiddleManager Process
  • Overlord Process
  • Router Process
  • Peons
  • Approximate Histogram aggregators
  • Apache Avro
  • Microsoft Azure
  • Bloom Filter
  • DataSketches extension
  • DataSketches HLL Sketch module
  • DataSketches Quantiles Sketch module
  • DataSketches Theta Sketch module
  • DataSketches Tuple Sketch module
  • Basic Security
  • Kerberos
  • Cached Lookup Module
  • Apache Ranger Security
  • Google Cloud Storage
  • HDFS
  • Apache Kafka Lookups
  • Globally Cached Lookups
  • MySQL Metadata Store
  • ORC Extension
  • Druid pac4j based Security extension
  • Apache Parquet Extension
  • PostgreSQL Metadata Store
  • Protobuf
  • S3-compatible
  • Simple SSLContext Provider Module
  • Stats aggregator
  • Test Stats Aggregators
  • Ambari Metrics Emitter
  • Apache Cassandra
  • Rackspace Cloud Files
  • DistinctCount Aggregator
  • Graphite Emitter
  • InfluxDB Line Protocol Parser
  • InfluxDB Emitter
  • Kafka Emitter
  • Materialized View
  • Moment Sketches for Approximate Quantiles module
  • Moving Average Query
  • OpenTSDB Emitter
  • Druid Redis Cache
  • Microsoft SQLServer
  • StatsD Emitter
  • T-Digest Quantiles Sketch module
  • Thrift
  • Timestamp Min/Max aggregators
  • GCE Extensions
  • Aliyun OSS
  • Cardinality/HyperUnique aggregators
  • Select
  • Realtime Process
Edit

Moment Sketches for Approximate Quantiles module

This module provides aggregators for approximate quantile queries using the momentsketch library. The momentsketch provides coarse quantile estimates with less space and aggregation time overheads than traditional sketches, approaching the performance of counts and sums by reconstructing distributions from computed statistics.

To use this Apache Druid extension, make sure you include the extension in your config file:

druid.extensions.loadList=["druid-momentsketch"]

Aggregator

The result of the aggregation is a momentsketch that is the union of all sketches either built from raw data or read from the segments.

The momentSketch aggregator operates over raw data while the momentSketchMerge aggregator should be used when aggregating precomputed sketches.

{
  "type" : <aggregator_type>,
  "name" : <output_name>,
  "fieldName" : <input_name>,
  "k" : <int>,
  "compress" : <boolean>
 }
propertydescriptionrequired?
typeType of aggregator desired. Either "momentSketch" or "momentSketchMerge"yes
nameA String for the output (result) name of the calculation.yes
fieldNameA String for the name of the input field (can contain sketches or raw numeric values).yes
kParameter that determines the accuracy and size of the sketch. Higher k means higher accuracy but more space to store sketches. Usable range is generally [3,15]no, defaults to 13.
compressFlag for whether the aggregator compresses numeric values using arcsinh. Can improve robustness to skewed and long-tailed distributions, but reduces accuracy slightly on more uniform distributions.no, defaults to true

Post Aggregators

Users can query for a set of quantiles using the momentSketchSolveQuantiles post-aggregator on the sketches created by the momentSketch or momentSketchMerge aggregators.

{
  "type"  : "momentSketchSolveQuantiles",
  "name" : <output_name>,
  "field" : <reference to moment sketch>,
  "fractions" : <array of doubles in [0,1]>
}

Users can also query for the min/max of a distribution:

{
  "type" : "momentSketchMin" | "momentSketchMax",
  "name" : <output_name>,
  "field" : <reference to moment sketch>,
}

Example

As an example of a query with sketches pre-aggregated at ingestion time, one could set up the following aggregator at ingest:

{
  "type": "momentSketch",
  "name": "sketch",
  "fieldName": "value",
  "k": 10,
  "compress": true,
}

and make queries using the following aggregator + post-aggregator:

{
  "aggregations": [{
    "type": "momentSketchMerge",
    "name": "sketch",
    "fieldName": "sketch",
    "k": 10,
    "compress": true
  }],
  "postAggregations": [
  {
    "type": "momentSketchSolveQuantiles",
    "name": "quantiles",
    "fractions": [0.1, 0.5, 0.9],
    "field": {
      "type": "fieldAccess",
      "fieldName": "sketch"
    }
  },
  {
    "type": "momentSketchMin",
    "name": "min",
    "field": {
      "type": "fieldAccess",
      "fieldName": "sketch"
    }
  }]
}
← Materialized ViewMoving Average Query →

Technology · Use Cases · Powered by Druid · Docs · Community · Download · FAQ

 ·  ·  · 
Copyright © 2019 Apache Software Foundation.
Except where otherwise noted, licensed under CC BY-SA 4.0.
Apache Druid, Druid, and the Druid logo are either registered trademarks or trademarks of The Apache Software Foundation in the United States and other countries.