Apache Druid
  • Imply Documentation

›Hidden

Getting started

  • Introduction to Apache Druid
  • Quickstart
  • Docker
  • Single server deployment
  • Clustered deployment

Tutorials

  • Loading files natively
  • Load from Apache Kafka
  • Load from Apache Hadoop
  • Querying data
  • Roll-up
  • Configuring data retention
  • Updating existing data
  • Compacting segments
  • Deleting data
  • Writing an ingestion spec
  • Transforming input data
  • Kerberized HDFS deep storage

Design

  • Design
  • Segments
  • Processes and servers
  • Deep storage
  • Metadata storage
  • ZooKeeper

Ingestion

  • Ingestion
  • Data formats
  • Schema design tips
  • Data management
  • Stream ingestion

    • Apache Kafka
    • Amazon Kinesis
    • Tranquility

    Batch ingestion

    • Native batch
    • Hadoop-based
  • Task reference
  • Troubleshooting FAQ

Querying

  • Druid SQL
  • Native queries
  • Query execution
  • Concepts

    • Datasources
    • Joins
    • Lookups
    • Multi-value dimensions
    • Multitenancy
    • Query caching
    • Context parameters

    Native query types

    • Timeseries
    • TopN
    • GroupBy
    • Scan
    • Search
    • TimeBoundary
    • SegmentMetadata
    • DatasourceMetadata

    Native query components

    • Filters
    • Granularities
    • Dimensions
    • Aggregations
    • Post-aggregations
    • Expressions
    • Having filters (groupBy)
    • Sorting and limiting (groupBy)
    • Sorting (topN)
    • String comparators
    • Virtual columns
    • Spatial filters

Configuration

  • Configuration reference
  • Extensions
  • Logging

Operations

  • Web console
  • Getting started with Apache Druid
  • Basic cluster tuning
  • API reference
  • High availability
  • Rolling updates
  • Retaining or automatically dropping data
  • Metrics
  • Alerts
  • Working with different versions of Apache Hadoop
  • HTTP compression
  • TLS support
  • Password providers
  • dump-segment tool
  • reset-cluster tool
  • insert-segment-to-db tool
  • pull-deps tool
  • Misc

    • Legacy Management UIs
    • Deep storage migration
    • Export Metadata Tool
    • Metadata Migration
    • Segment Size Optimization
    • Content for build.sbt

Development

  • Developing on Druid
  • Creating extensions
  • JavaScript functionality
  • Build from source
  • Versioning
  • Experimental features

Misc

  • Papers

Hidden

  • Apache Druid vs Elasticsearch
  • Apache Druid vs. Key/Value Stores (HBase/Cassandra/OpenTSDB)
  • Apache Druid vs Kudu
  • Apache Druid vs Redshift
  • Apache Druid vs Spark
  • Apache Druid vs SQL-on-Hadoop
  • Authentication and Authorization
  • Broker
  • Coordinator Process
  • Historical Process
  • Indexer Process
  • Indexing Service
  • MiddleManager Process
  • Overlord Process
  • Router Process
  • Peons
  • Approximate Histogram aggregators
  • Apache Avro
  • Microsoft Azure
  • Bloom Filter
  • DataSketches extension
  • DataSketches HLL Sketch module
  • DataSketches Quantiles Sketch module
  • DataSketches Theta Sketch module
  • DataSketches Tuple Sketch module
  • Basic Security
  • Kerberos
  • Cached Lookup Module
  • Apache Ranger Security
  • Google Cloud Storage
  • HDFS
  • Apache Kafka Lookups
  • Globally Cached Lookups
  • MySQL Metadata Store
  • ORC Extension
  • Druid pac4j based Security extension
  • Apache Parquet Extension
  • PostgreSQL Metadata Store
  • Protobuf
  • S3-compatible
  • Simple SSLContext Provider Module
  • Stats aggregator
  • Test Stats Aggregators
  • Ambari Metrics Emitter
  • Apache Cassandra
  • Rackspace Cloud Files
  • DistinctCount Aggregator
  • Graphite Emitter
  • InfluxDB Line Protocol Parser
  • InfluxDB Emitter
  • Kafka Emitter
  • Materialized View
  • Moment Sketches for Approximate Quantiles module
  • Moving Average Query
  • OpenTSDB Emitter
  • Druid Redis Cache
  • Microsoft SQLServer
  • StatsD Emitter
  • T-Digest Quantiles Sketch module
  • Thrift
  • Timestamp Min/Max aggregators
  • GCE Extensions
  • Aliyun OSS
  • Cardinality/HyperUnique aggregators
  • Select
  • Realtime Process
Edit

Stats aggregator

This Apache Druid extension includes stat-related aggregators, including variance and standard deviations, etc. Make sure to include druid-stats as an extension.

Variance aggregator

Algorithm of the aggregator is the same with that of apache hive. This is the description in GenericUDAFVariance in hive.

Evaluate the variance using the algorithm described by Chan, Golub, and LeVeque in "Algorithms for computing the sample variance: analysis and recommendations" The American Statistician, 37 (1983) pp. 242--247.

variance = variance1 + variance2 + n/(m(m+n)) * pow(((m/n)t1 - t2),2)

where: - variance is sum(x-avg^2) (this is actually n times the variance) and is updated at every step. - n is the count of elements in chunk1 - m is the count of elements in chunk2 - t1 = sum of elements in chunk1, t2 = sum of elements in chunk2.

This algorithm was proven to be numerically stable by J.L. Barlow in "Error analysis of a pairwise summation algorithm to compute sample variance" Numer. Math, 58 (1991) pp. 583--590

Pre-aggregating variance at ingestion time

To use this feature, an "variance" aggregator must be included at indexing time. The ingestion aggregator can only apply to numeric values. If you use "variance" then any input rows missing the value will be considered to have a value of 0.

User can specify expected input type as one of "float", "double", "long", "variance" for ingestion, which is by default "float".

{
  "type" : "variance",
  "name" : <output_name>,
  "fieldName" : <metric_name>,
  "inputType" : <input_type>,
  "estimator" : <string>
}

To query for results, "variance" aggregator with "variance" input type or simply a "varianceFold" aggregator must be included in the query.

{
  "type" : "varianceFold",
  "name" : <output_name>,
  "fieldName" : <metric_name>,
  "estimator" : <string>
}
PropertyDescriptionDefault
estimatorSet "population" to get variance_pop rather than variance_sample, which is default.null

Standard deviation post-aggregator

To acquire standard deviation from variance, user can use "stddev" post aggregator.

{
  "type": "stddev",
  "name": "<output_name>",
  "fieldName": "<aggregator_name>",
  "estimator": <string>
}

Query examples:

Timeseries query

{
  "queryType": "timeseries",
  "dataSource": "testing",
  "granularity": "day",
  "aggregations": [
    {
      "type": "variance",
      "name": "index_var",
      "fieldName": "index_var"
    }
  ],
  "intervals": [
    "2016-03-01T00:00:00.000/2013-03-20T00:00:00.000"
  ]
}

TopN query

{
  "queryType": "topN",
  "dataSource": "testing",
  "dimensions": ["alias"],
  "threshold": 5,
  "granularity": "all",
  "aggregations": [
    {
      "type": "variance",
      "name": "index_var",
      "fieldName": "index"
    }
  ],
  "postAggregations": [
    {
      "type": "stddev",
      "name": "index_stddev",
      "fieldName": "index_var"
    }
  ],
  "intervals": [
    "2016-03-06T00:00:00/2016-03-06T23:59:59"
  ]
}

GroupBy query

{
  "queryType": "groupBy",
  "dataSource": "testing",
  "dimensions": ["alias"],
  "granularity": "all",
  "aggregations": [
    {
      "type": "variance",
      "name": "index_var",
      "fieldName": "index"
    }
  ],
  "postAggregations": [
    {
      "type": "stddev",
      "name": "index_stddev",
      "fieldName": "index_var"
    }
  ],
  "intervals": [
    "2016-03-06T00:00:00/2016-03-06T23:59:59"
  ]
}
← Simple SSLContext Provider ModuleTest Stats Aggregators →
  • Variance aggregator
    • Pre-aggregating variance at ingestion time
    • Standard deviation post-aggregator
  • Query examples:
    • Timeseries query
    • TopN query
    • GroupBy query

Technology · Use Cases · Powered by Druid · Docs · Community · Download · FAQ

 ·  ·  · 
Copyright © 2019 Apache Software Foundation.
Except where otherwise noted, licensed under CC BY-SA 4.0.
Apache Druid, Druid, and the Druid logo are either registered trademarks or trademarks of The Apache Software Foundation in the United States and other countries.