Apache Druid
  • Imply Documentation

›Native query components

Getting started

  • Introduction to Apache Druid
  • Quickstart
  • Docker
  • Single server deployment
  • Clustered deployment

Tutorials

  • Loading files natively
  • Load from Apache Kafka
  • Load from Apache Hadoop
  • Querying data
  • Roll-up
  • Configuring data retention
  • Updating existing data
  • Compacting segments
  • Deleting data
  • Writing an ingestion spec
  • Transforming input data
  • Kerberized HDFS deep storage

Design

  • Design
  • Segments
  • Processes and servers
  • Deep storage
  • Metadata storage
  • ZooKeeper

Ingestion

  • Ingestion
  • Data formats
  • Schema design tips
  • Data management
  • Stream ingestion

    • Apache Kafka
    • Amazon Kinesis
    • Tranquility

    Batch ingestion

    • Native batch
    • Hadoop-based
  • Task reference
  • Troubleshooting FAQ

Querying

  • Druid SQL
  • Native queries
  • Query execution
  • Concepts

    • Datasources
    • Joins
    • Lookups
    • Multi-value dimensions
    • Multitenancy
    • Query caching
    • Context parameters

    Native query types

    • Timeseries
    • TopN
    • GroupBy
    • Scan
    • Search
    • TimeBoundary
    • SegmentMetadata
    • DatasourceMetadata

    Native query components

    • Filters
    • Granularities
    • Dimensions
    • Aggregations
    • Post-aggregations
    • Expressions
    • Having filters (groupBy)
    • Sorting and limiting (groupBy)
    • Sorting (topN)
    • String comparators
    • Virtual columns
    • Spatial filters

Configuration

  • Configuration reference
  • Extensions
  • Logging

Operations

  • Web console
  • Getting started with Apache Druid
  • Basic cluster tuning
  • API reference
  • High availability
  • Rolling updates
  • Retaining or automatically dropping data
  • Metrics
  • Alerts
  • Working with different versions of Apache Hadoop
  • HTTP compression
  • TLS support
  • Password providers
  • dump-segment tool
  • reset-cluster tool
  • insert-segment-to-db tool
  • pull-deps tool
  • Misc

    • Legacy Management UIs
    • Deep storage migration
    • Export Metadata Tool
    • Metadata Migration
    • Segment Size Optimization
    • Content for build.sbt

Development

  • Developing on Druid
  • Creating extensions
  • JavaScript functionality
  • Build from source
  • Versioning
  • Experimental features

Misc

  • Papers

Hidden

  • Apache Druid vs Elasticsearch
  • Apache Druid vs. Key/Value Stores (HBase/Cassandra/OpenTSDB)
  • Apache Druid vs Kudu
  • Apache Druid vs Redshift
  • Apache Druid vs Spark
  • Apache Druid vs SQL-on-Hadoop
  • Authentication and Authorization
  • Broker
  • Coordinator Process
  • Historical Process
  • Indexer Process
  • Indexing Service
  • MiddleManager Process
  • Overlord Process
  • Router Process
  • Peons
  • Approximate Histogram aggregators
  • Apache Avro
  • Microsoft Azure
  • Bloom Filter
  • DataSketches extension
  • DataSketches HLL Sketch module
  • DataSketches Quantiles Sketch module
  • DataSketches Theta Sketch module
  • DataSketches Tuple Sketch module
  • Basic Security
  • Kerberos
  • Cached Lookup Module
  • Apache Ranger Security
  • Google Cloud Storage
  • HDFS
  • Apache Kafka Lookups
  • Globally Cached Lookups
  • MySQL Metadata Store
  • ORC Extension
  • Druid pac4j based Security extension
  • Apache Parquet Extension
  • PostgreSQL Metadata Store
  • Protobuf
  • S3-compatible
  • Simple SSLContext Provider Module
  • Stats aggregator
  • Test Stats Aggregators
  • Ambari Metrics Emitter
  • Apache Cassandra
  • Rackspace Cloud Files
  • DistinctCount Aggregator
  • Graphite Emitter
  • InfluxDB Line Protocol Parser
  • InfluxDB Emitter
  • Kafka Emitter
  • Materialized View
  • Moment Sketches for Approximate Quantiles module
  • Moving Average Query
  • OpenTSDB Emitter
  • Druid Redis Cache
  • Microsoft SQLServer
  • StatsD Emitter
  • T-Digest Quantiles Sketch module
  • Thrift
  • Timestamp Min/Max aggregators
  • GCE Extensions
  • Aliyun OSS
  • Cardinality/HyperUnique aggregators
  • Select
  • Realtime Process
Edit

Having filters (groupBy)

Apache Druid supports two query languages: Druid SQL and native queries. This document describes the native language. For information about functions available in SQL, refer to the SQL documentation.

A having clause is a JSON object identifying which rows from a groupBy query should be returned, by specifying conditions on aggregated values.

It is essentially the equivalent of the HAVING clause in SQL.

Apache Druid supports the following types of having clauses.

Query filters

Query filter HavingSpecs allow all Druid query filters to be used in the Having part of the query.

The grammar for a query filter HavingSpec is:

{
    "queryType": "groupBy",
    "dataSource": "sample_datasource",
    ...
    "having":
        {
            "type" : "filter",
            "filter" : <any Druid query filter>
        }
}

For example, to use a selector filter:

{
    "queryType": "groupBy",
    "dataSource": "sample_datasource",
    ...
    "having":
        {
            "type" : "filter",
            "filter" : {
              "type": "selector",
              "dimension" : "<dimension>",
              "value" : "<dimension_value>"
            }
        }
}

You can use "filter" HavingSpecs to filter on the timestamp of result rows by applying a filter to the "__time" column.

Numeric filters

The simplest having clause is a numeric filter. Numeric filters can be used as the base filters for more complex boolean expressions of filters.

Here's an example of a having-clause numeric filter:

{
    "queryType": "groupBy",
    "dataSource": "sample_datasource",
    ...
    "having":
        {
            "type": "greaterThan",
            "aggregation": "<aggregate_metric>",
            "value": <numeric_value>
        }
}

Equal To

The equalTo filter will match rows with a specific aggregate value. The grammar for an equalTo filter is as follows:

{
    "queryType": "groupBy",
    "dataSource": "sample_datasource",
    ...
    "having":
        {
            "type": "equalTo",
            "aggregation": "<aggregate_metric>",
            "value": <numeric_value>
        }
}

This is the equivalent of HAVING <aggregate> = <value>.

Greater Than

The greaterThan filter will match rows with aggregate values greater than the given value. The grammar for a greaterThan filter is as follows:

{
    "queryType": "groupBy",
    "dataSource": "sample_datasource",
    ...
    "having":
        {
            "type": "greaterThan",
            "aggregation": "<aggregate_metric>",
            "value": <numeric_value>
        }
}

This is the equivalent of HAVING <aggregate> > <value>.

Less Than

The lessThan filter will match rows with aggregate values less than the specified value. The grammar for a greaterThan filter is as follows:

{
    "queryType": "groupBy",
    "dataSource": "sample_datasource",
    ...
    "having":
        {
            "type": "lessThan",
            "aggregation": "<aggregate_metric>",
            "value": <numeric_value>
        }
}

This is the equivalent of HAVING <aggregate> < <value>.

Dimension Selector Filter

dimSelector

The dimSelector filter will match rows with dimension values equal to the specified value. The grammar for a dimSelector filter is as follows:

{
    "queryType": "groupBy",
    "dataSource": "sample_datasource",
    ...
    "having":
       {
            "type": "dimSelector",
            "dimension": "<dimension>",
            "value": <dimension_value>
        }
}

Logical expression filters

AND

The grammar for an AND filter is as follows:

{
    "queryType": "groupBy",
    "dataSource": "sample_datasource",
    ...
    "having":
        {
            "type": "and",
            "havingSpecs": [
                {
                    "type": "greaterThan",
                    "aggregation": "<aggregate_metric>",
                    "value": <numeric_value>
                },
                {
                    "type": "lessThan",
                    "aggregation": "<aggregate_metric>",
                    "value": <numeric_value>
                }
            ]
        }
}

OR

The grammar for an OR filter is as follows:

{
    "queryType": "groupBy",
    "dataSource": "sample_datasource",
    ...
    "having":
        {
            "type": "or",
            "havingSpecs": [
                {
                    "type": "greaterThan",
                    "aggregation": "<aggregate_metric>",
                    "value": <numeric_value>
                },
                {
                    "type": "equalTo",
                    "aggregation": "<aggregate_metric>",
                    "value": <numeric_value>
                }
            ]
        }
}

NOT

The grammar for a NOT filter is as follows:

{
    "queryType": "groupBy",
    "dataSource": "sample_datasource",
    ...
    "having":
        {
        "type": "not",
        "havingSpec":
            {
                "type": "equalTo",
                "aggregation": "<aggregate_metric>",
                "value": <numeric_value>
            }
        }
}
← ExpressionsSorting and limiting (groupBy) →

Technology · Use Cases · Powered by Druid · Docs · Community · Download · FAQ

 ·  ·  · 
Copyright © 2019 Apache Software Foundation.
Except where otherwise noted, licensed under CC BY-SA 4.0.
Apache Druid, Druid, and the Druid logo are either registered trademarks or trademarks of The Apache Software Foundation in the United States and other countries.