Apache Druid
  • Imply Documentation

›Hidden

Getting started

  • Introduction to Apache Druid
  • Quickstart
  • Docker
  • Single server deployment
  • Clustered deployment

Tutorials

  • Loading files natively
  • Load from Apache Kafka
  • Load from Apache Hadoop
  • Querying data
  • Roll-up
  • Configuring data retention
  • Updating existing data
  • Compacting segments
  • Deleting data
  • Writing an ingestion spec
  • Transforming input data
  • Kerberized HDFS deep storage

Design

  • Design
  • Segments
  • Processes and servers
  • Deep storage
  • Metadata storage
  • ZooKeeper

Ingestion

  • Ingestion
  • Data formats
  • Schema design tips
  • Data management
  • Stream ingestion

    • Apache Kafka
    • Amazon Kinesis
    • Tranquility

    Batch ingestion

    • Native batch
    • Hadoop-based
  • Task reference
  • Troubleshooting FAQ

Querying

  • Druid SQL
  • Native queries
  • Query execution
  • Concepts

    • Datasources
    • Joins
    • Lookups
    • Multi-value dimensions
    • Multitenancy
    • Query caching
    • Context parameters

    Native query types

    • Timeseries
    • TopN
    • GroupBy
    • Scan
    • Search
    • TimeBoundary
    • SegmentMetadata
    • DatasourceMetadata

    Native query components

    • Filters
    • Granularities
    • Dimensions
    • Aggregations
    • Post-aggregations
    • Expressions
    • Having filters (groupBy)
    • Sorting and limiting (groupBy)
    • Sorting (topN)
    • String comparators
    • Virtual columns
    • Spatial filters

Configuration

  • Configuration reference
  • Extensions
  • Logging

Operations

  • Web console
  • Getting started with Apache Druid
  • Basic cluster tuning
  • API reference
  • High availability
  • Rolling updates
  • Retaining or automatically dropping data
  • Metrics
  • Alerts
  • Working with different versions of Apache Hadoop
  • HTTP compression
  • TLS support
  • Password providers
  • dump-segment tool
  • reset-cluster tool
  • insert-segment-to-db tool
  • pull-deps tool
  • Misc

    • Legacy Management UIs
    • Deep storage migration
    • Export Metadata Tool
    • Metadata Migration
    • Segment Size Optimization
    • Content for build.sbt

Development

  • Developing on Druid
  • Creating extensions
  • JavaScript functionality
  • Build from source
  • Versioning
  • Experimental features

Misc

  • Papers

Hidden

  • Apache Druid vs Elasticsearch
  • Apache Druid vs. Key/Value Stores (HBase/Cassandra/OpenTSDB)
  • Apache Druid vs Kudu
  • Apache Druid vs Redshift
  • Apache Druid vs Spark
  • Apache Druid vs SQL-on-Hadoop
  • Authentication and Authorization
  • Broker
  • Coordinator Process
  • Historical Process
  • Indexer Process
  • Indexing Service
  • MiddleManager Process
  • Overlord Process
  • Router Process
  • Peons
  • Approximate Histogram aggregators
  • Apache Avro
  • Microsoft Azure
  • Bloom Filter
  • DataSketches extension
  • DataSketches HLL Sketch module
  • DataSketches Quantiles Sketch module
  • DataSketches Theta Sketch module
  • DataSketches Tuple Sketch module
  • Basic Security
  • Kerberos
  • Cached Lookup Module
  • Apache Ranger Security
  • Google Cloud Storage
  • HDFS
  • Apache Kafka Lookups
  • Globally Cached Lookups
  • MySQL Metadata Store
  • ORC Extension
  • Druid pac4j based Security extension
  • Apache Parquet Extension
  • PostgreSQL Metadata Store
  • Protobuf
  • S3-compatible
  • Simple SSLContext Provider Module
  • Stats aggregator
  • Test Stats Aggregators
  • Ambari Metrics Emitter
  • Apache Cassandra
  • Rackspace Cloud Files
  • DistinctCount Aggregator
  • Graphite Emitter
  • InfluxDB Line Protocol Parser
  • InfluxDB Emitter
  • Kafka Emitter
  • Materialized View
  • Moment Sketches for Approximate Quantiles module
  • Moving Average Query
  • OpenTSDB Emitter
  • Druid Redis Cache
  • Microsoft SQLServer
  • StatsD Emitter
  • T-Digest Quantiles Sketch module
  • Thrift
  • Timestamp Min/Max aggregators
  • GCE Extensions
  • Aliyun OSS
  • Cardinality/HyperUnique aggregators
  • Select
  • Realtime Process
Edit

T-Digest Quantiles Sketch module

This module provides Apache Druid approximate sketch aggregators based on T-Digest. T-Digest (https://github.com/tdunning/t-digest) is a popular data structure for accurate on-line accumulation of rank-based statistics such as quantiles and trimmed means. The data structure is also designed for parallel programming use cases like distributed aggregations or map reduce jobs by making combining two intermediate t-digests easy and efficient.

The tDigestSketch aggregator is capable of generating sketches from raw numeric values as well as aggregating/combining pre-generated T-Digest sketches generated using the tDigestSketch aggregator itself. While one can generate sketches on the fly during the query time itself, it generally is more performant to generate sketches during ingestion time itself and then combining them during query time. The module also provides a postAggregator, quantilesFromTDigestSketch, that can be used to compute approximate quantiles from T-Digest sketches generated by the tDigestSketch aggregator.

To use this aggregator, make sure you include the extension in your config file:

druid.extensions.loadList=["druid-tdigestsketch"]

Aggregator

The result of the aggregation is a T-Digest sketch that is built ingesting numeric values from the raw data or from combining pre-generated T-Digest sketches.

{
  "type" : "tDigestSketch",
  "name" : <output_name>,
  "fieldName" : <metric_name>,
  "compression": <parameter that controls size and accuracy>
 }

Example:

{
    "type": "tDigestSketch",
    "name": "sketch",
    "fieldName": "session_duration",
    "compression": 200
}
{
    "type": "tDigestSketch",
    "name": "combined_sketch",
    "fieldName": <input-column>,
    "compression": 200
}
propertydescriptionrequired?
typeThis String should always be "tDigestSketch"yes
nameA String for the output (result) name of the calculation.yes
fieldNameA String for the name of the input field containing raw numeric values or pre-generated T-Digest sketches.yes
compressionParameter that determines the accuracy and size of the sketch. Higher compression means higher accuracy but more space to store sketches.no, defaults to 100

Post Aggregators

Quantiles

This returns an array of quantiles corresponding to a given array of fractions.

{
  "type"  : "quantilesFromTDigestSketch",
  "name": <output name>,
  "field"  : <post aggregator that refers to a TDigestSketch (fieldAccess or another post aggregator)>,
  "fractions" : <array of fractions>
}
propertydescriptionrequired?
typeThis String should always be "quantilesFromTDigestSketch"yes
nameA String for the output (result) name of the calculation.yes
fieldA field reference pointing to the field aggregated/combined T-Digest sketch.yes
fractionsNon-empty array of fractions between 0 and 1yes

Example:

{
    "queryType": "groupBy",
    "dataSource": "test_datasource",
    "granularity": "ALL",
    "dimensions": [],
    "aggregations": [{
        "type": "tDigestSketch",
        "name": "merged_sketch",
        "fieldName": "ingested_sketch",
        "compression": 200
    }],
    "postAggregations": [{
        "type": "quantilesFromTDigestSketch",
        "name": "quantiles",
        "fractions": [0, 0.5, 1],
        "field": {
            "type": "fieldAccess",
            "fieldName": "merged_sketch"
        }
    }],
    "intervals": ["2016-01-01T00:00:00.000Z/2016-01-31T00:00:00.000Z"]
}

Similar to quantilesFromTDigestSketch except it takes in a single fraction for computing quantile.

{
  "type"  : "quantileFromTDigestSketch",
  "name": <output name>,
  "field"  : <post aggregator that refers to a TDigestSketch (fieldAccess or another post aggregator)>,
  "fraction" : <value>
}
propertydescriptionrequired?
typeThis String should always be "quantileFromTDigestSketch"yes
nameA String for the output (result) name of the calculation.yes
fieldA field reference pointing to the field aggregated/combined T-Digest sketch.yes
fractionDecimal value between 0 and 1yes
← StatsD EmitterThrift →

Technology · Use Cases · Powered by Druid · Docs · Community · Download · FAQ

 ·  ·  · 
Copyright © 2019 Apache Software Foundation.
Except where otherwise noted, licensed under CC BY-SA 4.0.
Apache Druid, Druid, and the Druid logo are either registered trademarks or trademarks of The Apache Software Foundation in the United States and other countries.