Apache Druid
  • Imply Documentation

›Hidden

Getting started

  • Introduction to Apache Druid
  • Quickstart
  • Docker
  • Single server deployment
  • Clustered deployment

Tutorials

  • Loading files natively
  • Load from Apache Kafka
  • Load from Apache Hadoop
  • Querying data
  • Roll-up
  • Configuring data retention
  • Updating existing data
  • Compacting segments
  • Deleting data
  • Writing an ingestion spec
  • Transforming input data
  • Kerberized HDFS deep storage

Design

  • Design
  • Segments
  • Processes and servers
  • Deep storage
  • Metadata storage
  • ZooKeeper

Ingestion

  • Ingestion
  • Data formats
  • Schema design tips
  • Data management
  • Stream ingestion

    • Apache Kafka
    • Amazon Kinesis
    • Tranquility

    Batch ingestion

    • Native batch
    • Hadoop-based
  • Task reference
  • Troubleshooting FAQ

Querying

  • Druid SQL
  • Native queries
  • Query execution
  • Concepts

    • Datasources
    • Joins
    • Lookups
    • Multi-value dimensions
    • Multitenancy
    • Query caching
    • Context parameters

    Native query types

    • Timeseries
    • TopN
    • GroupBy
    • Scan
    • Search
    • TimeBoundary
    • SegmentMetadata
    • DatasourceMetadata

    Native query components

    • Filters
    • Granularities
    • Dimensions
    • Aggregations
    • Post-aggregations
    • Expressions
    • Having filters (groupBy)
    • Sorting and limiting (groupBy)
    • Sorting (topN)
    • String comparators
    • Virtual columns
    • Spatial filters

Configuration

  • Configuration reference
  • Extensions
  • Logging

Operations

  • Web console
  • Getting started with Apache Druid
  • Basic cluster tuning
  • API reference
  • High availability
  • Rolling updates
  • Retaining or automatically dropping data
  • Metrics
  • Alerts
  • Working with different versions of Apache Hadoop
  • HTTP compression
  • TLS support
  • Password providers
  • dump-segment tool
  • reset-cluster tool
  • insert-segment-to-db tool
  • pull-deps tool
  • Misc

    • Legacy Management UIs
    • Deep storage migration
    • Export Metadata Tool
    • Metadata Migration
    • Segment Size Optimization
    • Content for build.sbt

Development

  • Developing on Druid
  • Creating extensions
  • JavaScript functionality
  • Build from source
  • Versioning
  • Experimental features

Misc

  • Papers

Hidden

  • Apache Druid vs Elasticsearch
  • Apache Druid vs. Key/Value Stores (HBase/Cassandra/OpenTSDB)
  • Apache Druid vs Kudu
  • Apache Druid vs Redshift
  • Apache Druid vs Spark
  • Apache Druid vs SQL-on-Hadoop
  • Authentication and Authorization
  • Broker
  • Coordinator Process
  • Historical Process
  • Indexer Process
  • Indexing Service
  • MiddleManager Process
  • Overlord Process
  • Router Process
  • Peons
  • Approximate Histogram aggregators
  • Apache Avro
  • Microsoft Azure
  • Bloom Filter
  • DataSketches extension
  • DataSketches HLL Sketch module
  • DataSketches Quantiles Sketch module
  • DataSketches Theta Sketch module
  • DataSketches Tuple Sketch module
  • Basic Security
  • Kerberos
  • Cached Lookup Module
  • Apache Ranger Security
  • Google Cloud Storage
  • HDFS
  • Apache Kafka Lookups
  • Globally Cached Lookups
  • MySQL Metadata Store
  • ORC Extension
  • Druid pac4j based Security extension
  • Apache Parquet Extension
  • PostgreSQL Metadata Store
  • Protobuf
  • S3-compatible
  • Simple SSLContext Provider Module
  • Stats aggregator
  • Test Stats Aggregators
  • Ambari Metrics Emitter
  • Apache Cassandra
  • Rackspace Cloud Files
  • DistinctCount Aggregator
  • Graphite Emitter
  • InfluxDB Line Protocol Parser
  • InfluxDB Emitter
  • Kafka Emitter
  • Materialized View
  • Moment Sketches for Approximate Quantiles module
  • Moving Average Query
  • OpenTSDB Emitter
  • Druid Redis Cache
  • Microsoft SQLServer
  • StatsD Emitter
  • T-Digest Quantiles Sketch module
  • Thrift
  • Timestamp Min/Max aggregators
  • GCE Extensions
  • Aliyun OSS
  • Cardinality/HyperUnique aggregators
  • Select
  • Realtime Process
Edit

DataSketches Theta Sketch module

This module provides Apache Druid aggregators based on Theta sketch from Apache DataSketches library. Note that sketch algorithms are approximate; see details in the "Accuracy" section of the datasketches doc. At ingestion time, this aggregator creates the Theta sketch objects which get stored in Druid segments. Logically speaking, a Theta sketch object can be thought of as a Set data structure. At query time, sketches are read and aggregated (set unioned) together. In the end, by default, you receive the estimate of the number of unique entries in the sketch object. Also, you can use post aggregators to do union, intersection or difference on sketch columns in the same row. Note that you can use thetaSketch aggregator on columns which were not ingested using the same. It will return estimated cardinality of the column. It is recommended to use it at ingestion time as well to make querying faster.

To use this aggregator, make sure you include the extension in your config file:

druid.extensions.loadList=["druid-datasketches"]

Aggregators

{
  "type" : "thetaSketch",
  "name" : <output_name>,
  "fieldName" : <metric_name>,
  "isInputThetaSketch": false,
  "size": 16384
 }
propertydescriptionrequired?
typeThis String should always be "thetaSketch"yes
nameA String for the output (result) name of the calculation.yes
fieldNameA String for the name of the aggregator used at ingestion time.yes
isInputThetaSketchThis should only be used at indexing time if your input data contains theta sketch objects. This would be the case if you use datasketches library outside of Druid, say with Pig/Hive, to produce the data that you are ingesting into Druidno, defaults to false
sizeMust be a power of 2. Internally, size refers to the maximum number of entries sketch object will retain. Higher size means higher accuracy but more space to store sketches. Note that after you index with a particular size, druid will persist sketch in segments and you will use size greater or equal to that at query time. See the DataSketches site for details. In general, We recommend just sticking to default size.no, defaults to 16384

Post Aggregators

Sketch Estimator

{
  "type"  : "thetaSketchEstimate",
  "name": <output name>,
  "field"  : <post aggregator of type fieldAccess that refers to a thetaSketch aggregator or that of type thetaSketchSetOp>
}

Sketch Operations

{
  "type"  : "thetaSketchSetOp",
  "name": <output name>,
  "func": <UNION|INTERSECT|NOT>,
  "fields"  : <array of fieldAccess type post aggregators to access the thetaSketch aggregators or thetaSketchSetOp type post aggregators to allow arbitrary combination of set operations>,
  "size": <16384 by default, must be max of size from sketches in fields input>
}

Sketch Summary

This returns a summary of the sketch that can be used for debugging. This is the result of calling toString() method.

{
  "type"  : "thetaSketchToString",
  "name": <output name>,
  "field"  : <post aggregator that refers to a Theta sketch (fieldAccess or another post aggregator)>
}

Examples

Assuming, you have a dataset containing (timestamp, product, user_id). You want to answer questions like

How many unique users visited product A? How many unique users visited both product A and product B?

to answer above questions, you would index your data using following aggregator.

{ "type": "thetaSketch", "name": "user_id_sketch", "fieldName": "user_id" }

then, sample query for, How many unique users visited product A?

{
  "queryType": "groupBy",
  "dataSource": "test_datasource",
  "granularity": "ALL",
  "dimensions": [],
  "aggregations": [
    { "type": "thetaSketch", "name": "unique_users", "fieldName": "user_id_sketch" }
  ],
  "filter": { "type": "selector", "dimension": "product", "value": "A" },
  "intervals": [ "2014-10-19T00:00:00.000Z/2014-10-22T00:00:00.000Z" ]
}

sample query for, How many unique users visited both product A and B?

{
  "queryType": "groupBy",
  "dataSource": "test_datasource",
  "granularity": "ALL",
  "dimensions": [],
  "filter": {
    "type": "or",
    "fields": [
      {"type": "selector", "dimension": "product", "value": "A"},
      {"type": "selector", "dimension": "product", "value": "B"}
    ]
  },
  "aggregations": [
    {
      "type" : "filtered",
      "filter" : {
        "type" : "selector",
        "dimension" : "product",
        "value" : "A"
      },
      "aggregator" :     {
        "type": "thetaSketch", "name": "A_unique_users", "fieldName": "user_id_sketch"
      }
    },
    {
      "type" : "filtered",
      "filter" : {
        "type" : "selector",
        "dimension" : "product",
        "value" : "B"
      },
      "aggregator" :     {
        "type": "thetaSketch", "name": "B_unique_users", "fieldName": "user_id_sketch"
      }
    }
  ],
  "postAggregations": [
    {
      "type": "thetaSketchEstimate",
      "name": "final_unique_users",
      "field":
      {
        "type": "thetaSketchSetOp",
        "name": "final_unique_users_sketch",
        "func": "INTERSECT",
        "fields": [
          {
            "type": "fieldAccess",
            "fieldName": "A_unique_users"
          },
          {
            "type": "fieldAccess",
            "fieldName": "B_unique_users"
          }
        ]
      }
    }
  ],
  "intervals": [
    "2014-10-19T00:00:00.000Z/2014-10-22T00:00:00.000Z"
  ]
}

Retention Analysis Example

Suppose you want to answer a question like, "How many unique users performed a specific action in a particular time period and also performed another specific action in a different time period?"

e.g., "How many unique users signed up in week 1, and purchased something in week 2?"

Using the (timestamp, product, user_id) example dataset, data would be indexed with the following aggregator, like in the example above:

{ "type": "thetaSketch", "name": "user_id_sketch", "fieldName": "user_id" }

The following query expresses:

"Out of the unique users who visited Product A between 10/01/2014 and 10/07/2014, how many visited Product A again in the week of 10/08/2014 to 10/14/2014?"

{
  "queryType": "groupBy",
  "dataSource": "test_datasource",
  "granularity": "ALL",
  "dimensions": [],
  "filter": {
    "type": "or",
    "fields": [
      {"type": "selector", "dimension": "product", "value": "A"}
    ]
  },
  "aggregations": [
    {
      "type" : "filtered",
      "filter" : {
        "type" : "and",
        "fields" : [
          {
            "type" : "selector",
            "dimension" : "product",
            "value" : "A"
          },
          {
            "type" : "interval",
            "dimension" : "__time",
            "intervals" :  ["2014-10-01T00:00:00.000Z/2014-10-07T00:00:00.000Z"]
          }
        ]
      },
      "aggregator" :     {
        "type": "thetaSketch", "name": "A_unique_users_week_1", "fieldName": "user_id_sketch"
      }
    },
    {
      "type" : "filtered",
      "filter" : {
        "type" : "and",
        "fields" : [
          {
            "type" : "selector",
            "dimension" : "product",
            "value" : "A"
          },
          {
            "type" : "interval",
            "dimension" : "__time",
            "intervals" :  ["2014-10-08T00:00:00.000Z/2014-10-14T00:00:00.000Z"]
          }
        ]
      },
      "aggregator" : {
        "type": "thetaSketch", "name": "A_unique_users_week_2", "fieldName": "user_id_sketch"
      }
    },
  ],
  "postAggregations": [
    {
      "type": "thetaSketchEstimate",
      "name": "final_unique_users",
      "field":
      {
        "type": "thetaSketchSetOp",
        "name": "final_unique_users_sketch",
        "func": "INTERSECT",
        "fields": [
          {
            "type": "fieldAccess",
            "fieldName": "A_unique_users_week_1"
          },
          {
            "type": "fieldAccess",
            "fieldName": "A_unique_users_week_2"
          }
        ]
      }
    }
  ],
  "intervals": ["2014-10-01T00:00:00.000Z/2014-10-14T00:00:00.000Z"]
}
← DataSketches Quantiles Sketch moduleDataSketches Tuple Sketch module →

Technology · Use Cases · Powered by Druid · Docs · Community · Download · FAQ

 ·  ·  · 
Copyright © 2019 Apache Software Foundation.
Except where otherwise noted, licensed under CC BY-SA 4.0.
Apache Druid, Druid, and the Druid logo are either registered trademarks or trademarks of The Apache Software Foundation in the United States and other countries.